Attachment

Begriffserklärung:

Ein Anhang ist eine Datei, die zusammen mit einer E-Mail gesendet wird. Diese Dateien können verschiedene Formate haben, wie Dokumente, Bilder oder Präsentationen, und dienen dazu, zusätzliche Informationen bereitzustellen oder bestimmte Inhalte zu teilen.

Merkmale:
Vielfältige Formate: Anhänge können in verschiedenen Formaten vorliegen, z. B. PDF, DOCX, JPG, PNG usw.
Größenbeschränkungen: Viele E-Mail-Dienste haben eine maximale Größe für Anhänge, oft zwischen 10 MB und 25 MB.
Sicherheit: Anhänge können potenziell schädliche Software enthalten, daher ist es wichtig, vorsichtig zu sein, bevor man sie öffnet.

Beispiele:
– Ein Lebenslauf, der als PDF-Anhang an eine Bewerbungs-E-Mail gesendet wird.
– Ein Foto, das an eine E-Mail gesendet wird, um einen besonderen Moment zu teilen.
– Eine Präsentation, die als DOCX-Anhang verschickt wird, um sie mit Kollegen zu besprechen.

Comments

Deployment

Deployment refers to the process of making an AI model or system available for use in a real-world environment. It involves integrating the AI solution into existing infrastructure so that end-users or other systems can interact with it effectively.

**Characteristics:**
– Involves setting up the AI model on servers, cloud platforms, or edge devices.
– Includes configuring APIs, user interfaces, and data pipelines.
– Requires monitoring and maintenance to ensure performance and reliability.
– May involve scaling resources based on demand.
– Often includes version control and rollback mechanisms for updates.

**Examples:**
– Launching a chatbot on a company’s website to assist customers.
– Integrating a recommendation engine into an e-commerce platform.
– Deploying a computer vision model on security cameras for real-time threat detection.

Read More

Deep Learning

Deep Learning is a subset of machine learning that uses neural networks with many layers (hence “deep”) to model and understand complex patterns in data. It enables computers to perform tasks such as image recognition, natural language processing, and speech recognition by automatically learning features from raw data.

**Characteristics**
– Utilizes multi-layered neural networks called deep neural networks
– Capable of automatic feature extraction without manual intervention
– Requires large amounts of data and significant computational power
– Excels in handling unstructured data like images, audio, and text
– Improves performance as more data is fed into the system

**Examples**
– Image classification systems that identify objects in photos
– Voice assistants that understand and respond to spoken commands
– Language translation services that convert text between languages
– Autonomous vehicles that interpret sensor data to navigate safely

Read More

Data Set

**Characteristics:**
– A collection of data points or records used for analysis or training in AI and machine learning.
– Can include various types of data such as numbers, text, images, or audio.
– Often divided into subsets like training data, validation data, and test data to evaluate model performance.
– Structured in a way that each entry may have multiple features or attributes.

**Examples:**
– A set of images labeled with objects for an image recognition model.
– A spreadsheet containing customer information and purchase history for a recommendation system.
– A collection of text documents used to train a natural language processing model.

Read More